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O. INTRODUCTION

Let G be a finite or infinite compact Abelian group with normed Haar
measure m, let C(G) be the space of all complex-valued continuous functions
on G and let C be the set of all finite-dimensional, irreducible, unitary
representations of G. So all elements of C are one-dimensional, multiplicative
characters of G.

We consider finite K c C, their linear hull (K) c C(G), and the Fourier
projector FK : C(G)-+ (K);

(FxJ)(x) := f Dx(x - t)f(t) dm(t)
G

with the Dirichlet kernel D x := LYEK y.
The space of continuous linear operators L (C(G), (K») is furnished with

the norm

I~I := sup I~fl
If I =1

induced by the norm of uniform convergence on C(G).
In the classical case G=IR/2nl, Kn={eklek(t)=eikl, Ikl~n}, and

(Kn) = Pn' the problem of finding all minimal projectors is completely
solved; Lozinsky [71 has shown that F x has minimal norm among all linear
projectors C 2Tr -+ Pn' the uniqueness has\een proved by Cheney et al. [II.

The last result does not extend to the general case according to Lambert
[4,51. In the case G = 1R/2nl, D K real and determined up to a constant
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factor by its alternating points, FK is the unique minimal norm projector, if
and only if

f IDK(t)1 yet) dt = 0
G

In the general case this equivalence does not hold, and we give a charac­
terization of the minimal operators (Section 2).

We begin with an investigation of the mean value

f A(X) dm(x)
G

with the Lebesgue function A(X) := I# I; x denoting the evaluation functional
xJ:=J(x). Doing this we prove a more general version of a result in [8]. The
method of proof also is similar to the one used in [8].

1. ON THE MINIMALITY IN MEAN

First we introduce some notations.
Of special importance in this paper is the convex cone

LlK := {g E (K) Ig(x)· DK(x) ~ 0 for all x E G}.

Let M(G) be the space of all Radon measures on G. For each p E M(G) and
f, g E C(G) we write

p(f) = Ie J(t) $(t)

and

(gp)(f) = f J(t) get) dp(t).
G

Denoting a linear operator ¢J of the form

(¢Jf)(x) = Ie J(t) P(x - t) dp(t)

by

for aliJE C(G)
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all operators ¢> E L(C(G), (K») have a representation of the form ¢> =

LYEK/.ly@Y·
We restrict our attention to operators of the form

¢>=L/.ly@Y, /.liG) = 1
}'EK

for all Y E K.

In this way all linear projectors are covered, as can be easily seen.
Let us define a norm preserving, linear extension ¢>* of ¢> = LyEK /.ly@ Y by

(¢>*f)(x) := L f J(t) y(x - t) d/.lP)
yEK G

for allJELoo(G), xE G (Ll)

Clearly, for each x E G we have

Ix¢>* I= Ix¢> I· ( 1.2)

For operators of the form ¢>=LYEK/.ly@Y, /.ly(G) = 1 for all yEK the
Marcinkiewicz-Berman equality holds (compare [3]):

f TAT_xJdm(x)=FKJ
G

with the translation operators

for aliJE C(G) (1.3)

(TJ)(t) =J(t + x).

By reasons of continuity (1.3) also holds for all JE L 00 (G). The proof of
(1.3) is nearly the same as in [3] and is omitted. Denoting aCt) :=sgnDK(t)
for all t E G, by (1.3) we get

and therefore

especially

t (TA*T_xa)(O) dm(x) = (Fta)(O) = 1Ft I,

t Ix¢>* Idm(x) ~ 1Ft I,

(1.4)

(1.5)

(1.6)

Now we give a characterization of those operators ¢> = L.JlEK /.l y@ y,
/.ly(G) = 1 for y E K, whose Lebesgue function ,is minimal in mean.
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In this way we generalize our result [8 J to Abelian groups and translation
invariant subspaces.

THEOREM I. Let ~ = LYEK Il y@ y, IIIG) = 1for y E K. Then

f Ix~1 dm(x) = IFKI
G

(1. 7)

holds, if and only if there is a positive Borel measure 11 E M(G), and a family
(Kt E J KIt E G), the function (t, x) H Kt(x) being two-dimensional Borel
measurable and

~f= f f(t) T -tKt dll(t)
G

for al/fE C(G). (1.8)

Proof Because (K) consists of continuous functions only, the Lebesgue
function also is continuous and from (1.4) results (after extending ~ to ~*)

Eq. (1. 7) being equivalent to

(TX¢*T_xa)(O) = Ix~* 1 for m-almost all x E G. (1.9)

In the theorem, therefore, we can substitute (1.9) for (1.7). From (1.8) we get
(again after extending ~ to ~*)

(Tx~*Lxa)(O)=t a(x-t)Kt(x-t)dll(t)

=t IKt(x - t)1 dll(t)

=lx~*I·

Now we prove the reversal: If ~ = LYEKll y@ y the Radon-Nikodym
theorem yields a derivate dy of Il y for each y E K with respect to 11 :=

LYEK Illyi. Denoting Kt := LYEK dlt) . y we have

(~f)(x) = L f f(t) y(x - t) dlllt)
yEK G

= f f(t) L y(x - t) dlt) dll(t)
G yEK

= f f(t)(T _tKt)(x) diJ(t),
G
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and

(TA*T _xa)(O) = Ie a(x - t) Kt(x - t) dli(t).

On account of

Ix~*1=f IKt(x - t)1 dli(t)
G

from (1.9) we get

f a(x - t) Kt(x - t) dli(t)
G

III

for m-almost all x E G

respectively

f Re(a(x - t) Kt(x - t)) dli(t)
G

for m-almost all x E G. (1.10)

Let

J'tI' := {(x, t) E G2 1Re(a(x - t) Kt(x - t)) < 1Kt(x - t)1 f,

J'tI't := {x E G I (x, t) E J'tI'},

J'tI'x := {t E G 1 (x, t) E J'tI'}.

Then by (l.l0),

for m-almost all x E G. (1.11)

The set.L:= {t E G I m(J'tI't) > Of is Borel measurable. Let

X",,(x, t) := I

:=0

if (x, t) E .W'

if (x,t)f1:.W',
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Fubini's theorem yields
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f f X",(x, t) dp(t) dm(x) = f f X",AX, t) dm(x) dp(t)
G G G G

respectively

0= f p(~) dm(x) = f m(dt) dp(t)
G G

= r m(d l
) dp(t),

'1

and therefore

p(M) = O. (1.12)

For all (t, x) E At' X G, K1(x) can be replaced by 0 without modifying ~.

Now we have

for m-almost all x E G, (1.13 )

because m(dt
) = 0 for each t E G\L.

Because of the continuity of K t . D K , (1.13) holds for all x E G, and
therefore

for all t E G\L. (1.14 )

By reason of (1.12) condition (1.14) can be satisfied for all t E G without the
measurability of the function t /---+ T -tKt being hurt.

This completes the proof of Theorem 1. I

2. PROJECTORS OF MINIMAL NORM

We want to determine those operators of the form ~ = LyeKPy@ Y,
Py(G) = 1 for y E K, which are of minimal norm, i.e., those fs, for which

(2.1 )

holds. Because by (1.5) IFKI ~ fe Ix~1 dm(x) ~ I~I, we have to consider only
such operators ~ which satisfy fe Ix~1 dm(x) = IFKI. By (1.9) this condition
is equivalent to

for m-almost all x E G, (2.2)
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and because of the continuity of the Lebesgue function, (2.1) yields

113

for all x E G. (2.3)

Because of Theorem 1 each ~ E M has a representation of the form (~f)(x) =
JGf(t) K/(x - t) dfJ(t) for all fE C(G) with a positive Borel measure fJ and a
family (K/ E L1 K 1 t E G). So we get

1#1 = f IKlx - t)1 dfJ(t),
G

and have proved the following

THEOREM 2. Let ~ = L)'EK fJ y @ y, fJlG) = 1 for y E K. Then

holds if and only if ~ has a representation of the form

(~f)(x) = f f(t) K/(x - t) dfJ(t)
G

for allfE C(G)

with a positive Borel measure fJ and a family (K1 E L1 Kit E G) such that the
function (t, x) H K/(x) is two-dimensional Borel measurable and
JG IK/(x - t)1 dfJ(t) = IFKI holds for all x E G.

3. THE CLASSICAL CASE G = rR/27r7L

We investigate the case G = rR/27r7L especially with a K c (j yielding a
real Dirichlet kernel. To rR/27r7L belongs the set of characters (j = {ej Ij E 7L,
ej(t) := eU/}.

Keeping in mind that the functions {1m ej = -Im(e_J Ij E IN - {O}} are
linearly independent, we see that D K := LejEK ej is real if and only if K c (j
is symmetrical, i.e., (ejEK~e_jEK for all jE7L). Moreover, if K is
symmetrical, DK is even,

for all t E G, (3.1 )

and especially the set of the zeros of DK is symmetrical to O. Now we look
for functions g E (K), such that

(3.2)

640/31/2-2
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These g's are also real functions, and therefore, have a representation of the
form

g= ') (a.e.+a.e .)
"--' .1.1 .1-.1

eJEK
j)O

with suitable uj = xi + iYi'
xi,yjE IR, uo=xo'

= 2 L: Re(aje;) = 2 L: xi Re ei - Yj 1m ei·
~EK ~EK
j)O j)O

So, g is in the real space Vo= (Re ei , 1m ej Iei E K) with dim Vo= #K. If
D K has p zeros counting multiplicities, and we look for functions g E Vo'

having the same zeros with at least the same multiplicities as DK , we get a
real subspace V c lin L1 K with dim V ~ #K - p. Let AI' A 2 , ... , Ad be a basis
of V with A 1= DK and Ai E L1 K for i E {2,..., d}. Denoting cT:=
max{~ I~'I Ai(t)1 <(lid) IDK(t)1 for all t E G} we have 67> 0 for each i E
{I,... , df·

Now, we consider the following operators:
For sEIN and c;EIR with ICil<cT (l<i<d) let Ps :=FK+l1s@

L1~ I ciA; with I1 s := csm (cs(t) := cos(st»; then by Theorem IPs EM holds.
Moreover, for all x E G we have

d

=lxFKI+ i~l c;t a(x-t)Ai(x-t)cos(st)dm(t)

d

= IxFKI + L: L: C;ai,jf eit) cos(st) dm(t) eix),
i~ljEl G

with Ui,j := JG eit) IAj(t)1 dm(t),

IXPsl = IxFKI +! ct. ciai,S) es(x) +! (tl 6i Ui ._ S ) e_s(x);

altogether we get

for all x E G

(3.3)

If d ~ 3 there are solutions (c I , ..• , Cd) t= (0,... ,0) of the equations at the right
side of (3.3), and the convex hull of these minimal operators also consists of
minimal operators. We can find other minimal operators by choosing other
l1:s, e.g., I1 s= (Im es) . m. In any case, if d ~ 3 we have found an infinite­
dimensional, convex set of minimal operators.
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For s> 2 . maxlljll e; E Kf these P;s even are projectors onto (K),
because of

d

= L r Gie;(t)A;(x-t)cos(st)dm(t)=O
i~) -G

for all e; E K. Therefore, the set of minimal projectors onto (K) also is
infinite dimensional. But even for d = I, more projectors than Fk of minimal
norm may exist, as was shown already by Lambert [5,6 j. For if d = I, then
A)=DK, and if there is a sEG\{k)-k2 Ik"k 2 EK} with a).,=O, the
equations in (3.3) are fulfilled also for G) oF O.

As a simple example we consider a K c {ej E GUE U}. Then abs(D1J is
n-periodical as D K' and we get

for odd s.

4. EXAMPLES

In the classical case (K) = Pn being the space of all trigonometric
polynomials of degree <,n, we have dim L1 K = I, and the Fourier coefficients
of abs(D K) are all different from zero. This yields the uniqueness of the
Fourier projector [1,4,8 j.

Apart from K n := {e; Iljl <, n f, let us consider K; := {e; E K II Iljl oF I f.
and compare these two cases.

We have dim(Kn) = 2n + I and dim(K;) = 2n - 1. The classical Dirichlet
kernel D n := D Kn has a representation Dn(t) = sin((2n + l)t/2)/sin(t/2), and
for D;(t) := DK:;(t) we get

D;(t) = sin((2n + l)t/2)/sin(t/2) - 2 cos t. (4.1 )

In the following we get an upper bound of the number of zeros of D~ by
comparing D; with D n' As both functions are real. with the aid of the
considerations in Section 3, we can show that D; does not have enough
zeros for n E IN\jO. 1,2,3,5}, and get an infinite-dimensional set of minimal
projectors. We transform D n and D; into real polynomials of degree 1l by
substituting u = cos t, and denote dll(u):= DII(t). and d;(u):= D;(t). If
a < b, and dn(a) oF 0 oF dll(b), and d~(a) oF °oF d~(b). we denote the number
of zeros of dnld; I in (a, b) counting multiplicities by NII(a. b)IN~(a. b) I. and
the number of sign changes in the sequences (dll(a). d;,(a )...., d;,"\a)) Irespec­
tively (d~(a), d~'(a),... , d~(II)(a))l. the zeros being dropped, by
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Wn(a)/ W;(a)j. Because dn has only real zeros, for a <band dn(a) *- 0 *­
dAb) we have

(4.2)

and

(4.3 )

as all zeros of dn are in (-I, I). Thus, Wn(-I) = n, and Wn(l) = O. By
dn(xk ) = 0 for x k := cos(2nk/(2n + I», and 0 < k ~ n, we get

Nn(cos (), I) = l(2n + 1)()/(2n)j for 0 < () ~ n, and Dn(O) *- O.

Now, Nn(cos(), 1)= Wn(cos()- Wn(l) = Wn(cos() yields

Wn(cos () = l(2n + 1)()/(2n)j.

Because of IDn(t)1 ~ (sin(t/2»~ I for all t E (0, n), and

(4.4 )

we have

(sin(t/2»-1 < -2 cos t for tE [0.7n,n],

d;(x) *- 0 for x E [-I, cos(0.7n)].

For -I <x ~ cos(0.7n), and d;(x) *- 0, therefore,

N;(-I, I) = N;(x, I)

~ W;(x) - W;(I)

~ W;(x)

(4.5 )

holds. Now, we will estimate W;(x) by comparison with Wn(x). We have
d;(x) = dn(x) - 2x, d;'(x) = d~(x) - 2, and d;(V)(x) = d~V)(x) for 2 ~ v~ n,
so Wn(x)-2~ W;(x)~ Wn(x) + 2 for any n. Because of (4.4)
Wn(cos(0.77!"» = lO.7n+0.35j holds, and for n~ 12,

W;(x)~ Wn(x)+2~ lO.7n+0.35j +2~n-2

yields by (4.5)

N; (-I, 1) ~ n - 2.

So, for n ~ 12, D; has at most 2n - 4 zeros counting multiplicities, while
#K; = 2n - I, and by Section 3 we get
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More exactly we have N;(-I, I)::;;: O.7n + 2.35, or dim(lin L1d >O.6n - 5.7.
If n E 14,6, 7, 8, 9, 10, II}, a more particular estimation of W;(x) is
necessary to show that D; has too small a number of zeros. In the simplest
case n = 4 one can show that Dt has two distinct pairs of zeros only, and
therefore

If s > 8, the linear projectors

3

P, :=FK4 + ~ [;s,;(csm)@A i
i= I

with suitable ([;S.I' [;s.2[;s.3) and Ai E L1 K4 are of minimal norm.

Note. When this work was finished, we were made aware of the recent
work of S. D. Fisher, P. D. Morris, and D. E. Wulbert, "Unique Minimality
of Fourier Projections." There it is shown that, in the case G = R/2n7L, the
range of FK having finite codimension and K being symmetrical, FK is the
unique minimal norm projection if and only if DK is "determined by its
zeros."
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